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Abstract The paper adopts a simplified two-dimensional approach to deal with convective heat
and mass transfer in laminar flows of humid air through wavy finned-tube exchangers. The
computational domain is spatially periodic, with fully developed conditions prevailing at a certain
distance from the inlet section. Both the entrance and the fully developed flow region are
investigated. In the fully developed region, periodicities in the flow, temperature and mass
concentration fields are taken into account. The approach is completely general, even if the finite
element method is used for the discretizations. In the application section, velocity, temperature, and
mass concentration fields are computed first. Then apparent friction factors, Nusselt numbers,
Colburn factors for heat and mass transfer, and goodness factors are evaluated both in the
entrance and in the fully developed region.
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Nomenclature
a ¼ thermal diffusivity of humid air
A ¼ peak-to-peak amplitude
d ¼ binary diffusion coefficient for the

water vapour – air mixture
DH ¼ hydraulic diameter
f ¼ friction factor
g ¼ effective load vector
h ¼ convection heat transfer

coefficient
hm ¼ convection mass transfer

coefficient
H ¼ height
H ¼ effective stiffness matrix
j ¼ Colburn factor for heat transfer
jm ¼ Colburn factor for mass transfer
L ¼ projected length
m ¼ number of half modules
_m ¼ mass flow rate
Nu ¼ Nusselt number
p ¼ pressure
p̃ ¼ periodic component of pressure
Pr ¼ Prandtl number
q ¼ heat flow rate

R ¼ gas constant
Re ¼ Reynolds number
S ¼ projected surface
Sc ¼ Schmidt number
Sh ¼ Sherwood number
St ¼ Strouhal number
t ¼ temperature
T ¼ absolute temperature
u, v ¼ velocity components in the (x, y )

directions
x, y ¼ Cartesian coordinates
y0 ¼ distance from the lower boundary in

the y direction
Greek
a ¼ overall pressure gradient in the flow

direction
f ¼ dependent variable
f ¼ vector of nodal values of f
n ¼ kinematic viscosity of humid air
q ¼ time
Q ¼ period
r ¼ density of humid air
v ¼ mass fraction of water vapour
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Introduction
Simultaneous heat and mass convection occurs in many cooling systems
utilized for summer air-conditioning operations. Typical examples are fan-coil
units and evaporators when external surfaces are maintained at temperatures
below the dew point. In these apparatuses, the air-side heat transfer coefficient
is much smaller than the internal heat transfer coefficient for the refrigerating
fluid. To reduce the air-side thermal resistance, recourse is usually made to
extended surfaces in the form of fins that increase the external area. In modern
exchangers, however, the use of heat transfer enhancement techniques is also
required since, to limit the emission of noise, frontal velocities of the humid air
are maintained low and the resulting flows, almost invariably, laminar. To
increase convection coefficients, specially configurated fins are usually
adopted. For example, wavy fins have been employed extensively in the past
for their simplicity, and are still preferred today in many low-cost applications.

Two wavy channels of finite width have been investigated by Ali and
Ramadhyani (1992). These authors report a flow-visualization study, several
data concerning overall friction factors and heat transfer coefficients, and an
extensive literature review. Unfortunately, most available datas refer to
relatively high Reynolds number flows, overall friction, and heat transfer
coefficients. In fact, according to Webb (1994,, p. 110), not much information
seem to be available on entrance length effects even though these effects play
an important role in continuous fin surfaces. Furthermore, the present authors
are not aware of any study that deals with simultaneous heat and mass
convection within wavy fin channels.

The aim of this paper is to fill the gaps left by previous investigations, using
the finite element approach illustrated by Nonino and Comini (1997, 1998). The
proposed methodology is applied first to the computation of velocity,
temperature, and mass concentration fields during simultaneous heat and mass
convection in the entrance and in the fully developed regions within wavy fin
surfaces. Then, the corresponding momentum, heat and mass transfer
characteristics are evaluated in terms of friction factors, Nusselt numbers, and
Colburn factors for heat and mass convection. Furthermore, the performance of
wavy channels relative to plain channels is investigated. The main purpose,
however, is to clarify the physics of the process rather than to produce an
exhaustive database of numerical results. Thus, the examples of application

V ¼ dimensionless concentration of water
vapour

c ¼ streamfunction
Subscripts
b ¼ bulk
i ¼ inflow
ml ¼ logarithmic mean
o ¼ outflow

tf ¼ throughflow
v ¼ water vapour
w ¼ wall
1 ¼ in the fully developed region
Superscripts
n ¼ at the n-th time step

¯ ¼ space-averaged value
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concern laminar flows of humid air in the range of Reynolds numbers from 100
to 1,000, but deal with a single representative geometry. For the sake of
simplicity, the formulation is developed for two-dimensional domains and
disregards the influence of water vapour condensation on the velocity field.
Extensions to three-dimensional flows are possible and do not present
additional difficulties as demonstrated, for example, by Nonino et al. (1999) and
Nonino and Comini (2000). On the contrary, the effects of condensation on heat
and mass convection coefficients cannot be easily taken into account. However,
these effects are not even fully established experimentally, as yet, although it
appears that friction factors are always enhanced by the presence of
condensation, e.g. see Xu et al. (1994) and Ramadhyani (1998).

Statement of the problem
As already pointed out, we are dealing with heat and mass convection in two-
dimensional laminar flows of a constant property fluid. By simplifying the flow
in an actual tube-fin exchanger to a channel flow between parallel fins, we
neglect the effects due to the presence of tubes. However, we can still
adequately account for those of the wavy fin geometry, thus allowing
significant comparisons with the corresponding plain fins.

According to the two-dimensional approach followed, a typical tube-fin
exchanger, such as the one shown in Figure 1(a), is modelled as shown in
Figure 1(b). This schematic representation of the entrance region consists of a
series of identical geometrical modules. After a short distance from the
entrance the velocity, and the dimensionless temperature and mass
concentration fields repeat themselves, from module to module, attaining a
fully developed character. In the fully developed region, the repetitive fields
allow the limitation of the analysis to a single module, such as the one enclosed
by the periodic boundaries S1 and S3 in Figure 1(c). In the present case,
however, it is possible to reduce the computational domain still further. With
reference to Figure 1(c), in fact, one can consider only a single half-module, such
as the one enclosed by the anti-periodic boundaries S1 and S2. On these anti-
periodic boundaries, normal velocity components have the same value and the
same sign, while tangential velocity components have the same absolute value
but opposite sign. The relationships between temperature and mass
concentration distributions on S1 and S2 can be found, following the
procedure shown by Nonino and Comini (1998).

The flow field
Under the assumptions made, the momentum and continuity equations
governing the laminar flow of humid air can be written as:
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Figure 1.
Flow and convective heat
and mass transfer in a
typical tube-fin
exchanger: (a) tube-fin
geometry; (b) schematic
two-dimensional
representation of the
geometry; (c)
computational cell in the
fully developed region
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These equations, without any further modification, can be utilized for the
analysis of the entrance region shown in Figure 1(b). In the fully developed flow
region, the average pressure gradient is constant in the axial direction.
Consequently, with reference to the situation shown in Figure 1(c), we can write

pðx; yÞ ¼ 2ax þ ~pðx; yÞ ð4Þ

as suggested by Patankar et al. (1977). In the above equation, a is a constant
representing the overall pressure gradient in the main flow direction x, while ~p
is the periodic component of pressure.

On the basis of Equation (4), the momentum equations, governing the fully
developed laminar flow of the humid air, can be modified as follows:
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Appropriate conditions must be imposed on wall, anti-periodic, inflow and
outflow boundaries. On wall boundaries, we assume that the condensation
induces a negligible transversal velocity. Furthermore, we neglect the thickness
of the liquid film reflecting a “state of the art” in which there is no full
agreement on the effects of a liquid film. In fact, the presence of a liquid film
tends to increase the average axial velocity (reducing the heat convection
resistance and increasing the friction factor). On the other hand, a liquid film
also brings about an additional thermal resistance. Thus, as pointed out by
Ramadhyani (1998), it is yet unclear whether liquid films enhance or diminish
global convection coefficients, although it appears that they always increase
friction factors. For the above reasons, the usual no-slip boundary condition

u ¼ v ¼ 0 ð7Þ

is adopted at solid walls. This way, the flow problem is fully decoupled from
the heat and mass transfer problems. In particular, the flow field can be
determined without dealing simultaneously with concentration and
temperature distributions. However, it must be pointed out that, by
decoupling the equations, we do not disregard the effects of mass transfer on
energy exchanges. In fact latent heat fluxes, associated with mass
concentration gradients at wall surfaces, can be taken into account in the
same way as sensible heat fluxes related to temperature gradients, are accounted.

The anti-symmetric periodicity between the boundaries S1 and S2 yields the
condition

~pðL;H 2 y0Þ ¼ ~pð0; yÞ ð8Þ
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where y0 is the distance from the lower boundary measured in the y direction.
As shown in Figure 1(c), H is the height, i.e. the fin pitch, and L is the projected
length of one half-module. Similarly, on boundaries S1 and S2 we impose the
conditions:

uðL;H 2 y0Þ ¼ uð0; yÞ ð9Þ

vðL;H 2 y0Þ ¼ 2vð0; yÞ ð10Þ

In the analysis of the entrance region, we specify the inlet velocity components
by assuming a uniform velocity field parallel to the x-axis

u ¼ �u; v ¼ 0 ð11Þ

where ū is the average value of the velocity component in the x-direction,
evaluated as:

�u ¼
1

H

Z H

0

u dy ð12Þ

On the contrary, in fully developed periodic flows, conditions (9) and (10) do not
involve the specification of any inflow velocity. Therefore, the pressure
gradient a must be adjusted iteratively, until the desired value of the virtual
“inflow” velocity is reached as described by Nonino and Comini (1998).

Finally, in the analysis of the entrance region, we must specify also suitable
outflow conditions at an artificial boundary by assuming, for example:

›u

›q
þ �u

›u

›x
¼ 0 ð13Þ

›v

›q
þ �u

›v

›x
¼ 0 ð14Þ

These advective conditions are written in terms of a constant phase speed ū,
estimated as the average flow velocity in the main direction. By definition, they
yield the “natural” zero normal derivative conditions in stationary problems.

The behaviour of the flow is determined by the Reynolds number

Re ¼
�uDH

v
ð15Þ

where DH ¼ 2 H is the hydraulic diameter. The pressure drop depends on the
Reynolds number and, in this study, is expressed as

Dp ¼ f
mL

DH

r �u2

2
ð16Þ
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where f is the apparent friction factor, m is the number of half-modules
considered and L is the projected length of a single half-module. From equation
(16) it follows that, in the fully developed flow region, the apparent friction
factor can be expressed as

f1 ¼
aDH

r �u2=2
ð17Þ

since it is directly related to the pressure gradient a.

The temperature field
In the absence of volumetric heating, and neglecting the effects of viscous
dissipation, the two-dimensional energy equation can be written as
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›y
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›2t

›x2
þ

›2t

›y2

� �
ð18Þ

where a is the thermal diffusivity.
Appropriate conditions must be imposed on wall, periodic, inflow and

outflow boundaries. On solid boundaries, we specify the wall temperature:

t ¼ tw ð19Þ

On the contrary, for anti-periodic boundaries S1 and S2 in the fully developed
flow region, we cannot write any simple relationship of this kind. However, as
illustrated by Nonino and Comini (1998), we can use the alternative relationship

tðL;H 2 y0Þ2 tw

tbðLÞ2 tw
¼

tð0; yÞ2 tw

tbð0Þ2 tw
ð20Þ

which leads to the condition:

tðL;H 2 y0Þ ¼ 1 þ
tbðLÞ2 tbð0Þ

tbð0Þ2 tw

� �
tð0; yÞ2

tbðLÞ2 tbð0Þ

tbð0Þ2 tw
tw ð21Þ

In the above equations tb is the bulk temperature, which can be conveniently
defined as:

tb ¼

Z H

0

jujt dy

Z H

0

juj dy

ð22Þ

Equation (21) contains two unknown quantities: the bulk temperature at inflow
tb(0) and the difference between the bulk temperatures at outflow and inflow.
Thus, in the solution process, we first impose the value of the bulk temperature
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difference, and then iterate until convergence is reached for a value of tb(0)
which verifies the periodicity condition.

In the analysis of the entrance region, we directly specify the inlet
temperature by assuming

t ¼ ti ¼ const ð23Þ

and we also specify a suitable outflow condition at an artificial boundary by
assuming:

›t

›q
þ �u

›t

›x
¼ 0 ð24Þ

Once again, the advective condition (24) yields the “natural” zero normal
derivative condition in stationary problems.

The Reynolds number and the Prandtl number Pr ¼ n=a determine the
behaviour of the temperature field. This behaviour is characterized by the
overall, i.e. space averaged, Nusselt number, defined as

Nu ¼
�hDH

k
¼

2�hH

k
ð25Þ

where the bar over the Nu symbol has been omitted. In the above equation, the
average heat transfer coefficient is defined as suggested by Kelkar and
Patankar (1987)

�h ¼
q

SDtmt
ð26Þ

on the basis of the absolute value q of the heat transfer rate, the projected area S
(i.e. the area pertaining to the corresponding length of a plain channel), and the
log-mean temperature difference:

Dt ¼ Dtml ¼
½tw 2 tbðmLÞ�2 ½tw 2 tbð0Þ�

ln{½tw 2 tbðmLÞ�=½tw 2 tbð0Þ�}
ð27Þ

Obviously, m is equal to 1 when an anti-periodic domain is considered.
The heat transfer characteristics are often presented also in terms of the

Colburn factor for heat transfer:

j ¼
Nu

Re Pr1=3
ð28Þ

However, it must be pointed out that in fully developed laminar flows in plain
channels, the Nusselt number does not depend on the Reynolds and Prandtl
numbers.
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The mass concentration field
In the absence of fog formation, and for a constant value of the humid air
density, the species conservation requirement can be written as

›v

›q
þ u

›v

›x
þ v

›v

›y
¼ d

›2v

›x2
þ

›2v

›y2

� �
ð29Þ

where v is the mass fraction of water vapour, and d is the binary diffusion
coefficient for the mixture of dry air and water vapour.

Appropriate conditions must be imposed on wall and anti-periodic
boundaries. Under dehumidifying conditions, the pressure of the water
vapour at wall boundaries is equal to the saturation pressure at temperature tw.
Since the humid air behaves, approximately, as an ideal gas mixture, we have:

v ¼
rvðTwÞ

r
ø

pvðTwÞ=ðRvTwÞ

r
¼ vw ð30Þ

On the anti-periodic boundaries S1 and S2, in the fully developed flow region,
we cannot write any simple relationship of this kind. However, on the basis of
equation (20) we have

vðL;H 2 y0Þ2 vw

vbðLÞ2 vw
¼

vð0; yÞ2 vw

vbð0Þ2 vw
ð31Þ

which leads to the condition:

vðL;H 2 y0Þ ¼ 1 þ
vbðLÞ2 vbð0Þ

vbð0Þ2 vw

� �
vð0; yÞ2

vbðLÞ2 vbð0Þ

vbð0Þ2 vw
vw ð32Þ

In the above equation, vb is the bulk concentration, which can be conveniently
defined as:

vb ¼

Z H

0

jujv dy

Z H

0

juj dy

ð33Þ

Equation (32) contains two unknown quantities: the bulk concentration at
inflow vb(0) and the difference between the bulk concentrations at outflow and
inflow. Thus, in the solution process, we first impose the value of the bulk
concentration difference, and then iterate until convergence is reached for a
value of vb(0) which verifies the periodicity condition.

In the analysis of the entrance region, we directly specify the inlet
concentration by assuming

v ¼ vi ¼ const ð34Þ
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and we also specify a suitable outflow condition at an artificial boundary by
assuming:

›v

›q
þ �u

›v

›x
¼ 0 ð35Þ

Once again, the advective condition (35) yields the “natural” zero normal
derivative condition in stationary problems.

The Reynolds number, defined by equation (15), and the Schmidt number
Sc ¼ n=d determine the behaviour of the concentration field. This behaviour is
characterized by the overall, i.e. space averaged Sherwood number, defined as:

Sc ¼
�hmDH

d
ð36Þ

where the bar has been omitted over the Sh symbol. In the above equation

�hm ¼
_m

rSDvml
ð37Þ

is the average mass transfer coefficient, ṁ is the absolute value of the mass
transfer rate, S is the projected area, and

Dv ¼ Dvml ¼
½vw 2 vbðmLÞ�2 ½vw 2 vbð0Þ�

ln{½vw 2 vbðmLÞ�=½vw 2 vbð0Þ�Þ
ð38Þ

is the log-mean concentration difference. Once again, m is equal to 1 when an
anti-periodic domain is considered.

The mass transfer characteristics are often presented also in terms of a
Colburn factor for mass transfer:

jm ¼
Sh

Re Sc1=3
ð39Þ

However, it must be pointed out that in fully developed laminar flows in plain
channels, also the Sherwood number does not depend on the Reynolds and
Schmidt numbers.

Numerical solution
In the solution procedure, the momentum, continuity and energy equations are
dealt with by the equal-order, velocity–pressure algorithm for incompressible
thermal flows described by Nonino and Comini (1997). As already pointed out,
the velocity–pressure coupling is handled by a methodology that shares many
features with the SIMPLE/SIMPLER algorithm, illustrated by Patankar (1980).
At each new time step ðn þ 1Þ the pseudovelocity field (û, v̂, ŵ), obtained by
neglecting the pressure gradients in the momentum equations, is computed
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from the velocity field (u n, v n, w n), which prevails at the end of the old time
step (n ). Then, by enforcing continuity on the pseudo-velocity field, a tentative
pressure p* is estimated and the momentum equations are solved for the
tentative velocity field (u*, v*, w*). Afterwards, continuity is enforced again to
find pressure corrections p0, which yield the final pressure pnþ1 ¼ p* þ p0:
Pressure corrections are also used to find the velocity corrections (u0, v0, w0) that
!project @ (u*, v*, w*) onto the divergence-free space ðunþ1 ¼ u* þ u0;
vnþ1 ¼ v* þ v0; wnþ1 ¼ w* þ w0Þ: Once the velocity field ðunþ1; vnþ1;wnþ1Þ
has been found, the energy equation can be solved before moving to the next
step.

As illustrated by Comini et al. (1994), the momentum and energy equations
are particular versions of the general transport equation that can be written in
the time-discretized form:

g
fnþ1 2 fn

Dq
þ gvn·½tv7f

nþ1 þ ð1 2 tvÞ7f
n�

¼ G½tG7
2fnþ1 þ ð1 2 tGÞ7

2fn� þ _s ð40Þ

The properties g and G, and the volumetric source rate ṡ can be easily identified
by inspection of the appropriate original equations. It should be noted,
however, that the components of the pressure gradient are contained in the
source terms of the momentum equations. The weighting factors tv and tG,
both in the range from 0 to 1, allow the selection of different time-integration
schemes. Finally, it must be pointed out that the pressure equation, the
pressure correction equation, and the streamfunction equation are all particular
versions of the Poisson equation, which can be obtained from equation (40) by
assuming g ¼ 0 and tG ¼ G ¼ 1:

The space discretization of the general transport equation is based on the
Galerkin method. In fact, for each node i we obtain an integral form by
weighting and integrating equation (40) over the computational domain. The
application of Green’s theorem to the diffusion terms at the right hand side of
equation (40) yields the weak forms and allows the introduction of Neumann
boundary conditions.

As usual, the unknown functions are approximated throughout the solution
domain by means of the expansions

f ¼
X

Njfj ð41Þ

where fj stand for the nodal values, while Nj are interpolating functions. In the
Bubnov-Galerkin method utilized here, Nj coincide with the weighting
functions employed in the weak forms. Therefore no upwinding techniques are
employed.
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Substituting equation (41) into the appropriate weak forms, we arrive at
systems of space discretized equations, which can be written as

Hf ¼ g ð42Þ

w is the vector of nodal values, H is the effective stiffness matrix, accounting
for all homogeneous contributions, and g is the effective load vector,
accounting for all nonhomogeneous contributions. Finally, the boundary
conditions of the first kind at the walls are implemented in the usual way, e.g.
see Comini et al. (1994). The anti-periodic boundary conditions are introduced
as illustrated in detail by Nonino and Comini (1998). With reference to the
corresponding points on the inflow (i) and outflow (o) boundaries we have

f0 ¼ Bfi þ E ð43Þ

where the values of B and E can be easily inferred from the physical boundary
conditions. Accordingly, the matrix H and the right hand side vector g in
equation (42) are modified to take into account equation (43).

In the numerical simulations, the systems of linear equations, arising at each
time step from the discretization process, were solved by means of iterative
algorithms. The conjugate gradient squared (CGS) method, described by
Howard et al. (1990), has been used to solve the discretized momentum and
energy equati ons. The modified conjugate gradient method (MCG), illustrated
by Gambolati (1988, p. 136) has been used to solve the symmetric systems
obtained from the discretization of the Poisson equations. In both cases,
preconditioned matrices have been obtained from an incomplete LU
decomposition (ILU).

Results and discussion
As already pointed out, the aim of this work is to illustrate the physics of the
convection process rather than the production of an exhaustive database of
numerical results. Therefore, the examples concern several Reynolds number in
the range 100 # Re # 1; 000; but only the fin geometry shown in Figure 1
where we have: L=H ¼ 2:26 and b ¼ 208: The humid air is characterized by
the Prandtl and Schmidt number values: Pr ¼ 0:718 and Sc ¼ 0:61:

In the computations, we utilized the boundary conditions discussed in some
detail in the previous sections. The program had already been validated by
Nonino and Croce (1997), and Nonino and Comini (1998); Nonino et al. (1999).
On the other hand, its accuracy has been assessed once again imposing
periodicity conditions on a portion of a plain channel. In this way we obtained
results for the fully developed situation that, as expected, are independent of
the Reynolds and Prandtl number, and agree to the third digit with the
analytical solutions: Nu0 ¼ 7:5407 and ðf ReÞ0 ¼ 96:00 reported by Shah and
Bhatti (1987, p. 3.30). Before the final runs, grid independence was established
on the basis of calculations in which the distance between grid points was
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progressively reduced by 30 per cent from one simulation to another. When a
further decrease led to a change in the average Nusselt numbers smaller that
1 per cent, the results were considered grid-independent. Similarly, time-step
independence was established on the basis of preliminary calculations in which
the dimensionless time step �uDq=L was progressively reduced by 30 per cent
from one simulation to another. When a further decrease led to a change in the
average Nusselt numbers smaller that 1 per cent, the results were considered
independent also on the time step.

The mesh for the entrance region encompasses 12 modules but, to simplify
the graphical representations, only one module is shown in Figure 2. As
already pointed out, the mesh for the fully developed region encompasses a
single half-module. For the present calculations we used structured grids of
bilinear elements. A satisfactory independence of results from the grid was
established on the basis of preliminary calculations in which the distance
between grid points was progressively reduced by 30 per cent from one
simulation to another. When a further decrease led to a change in the average
Nusselt numbers smaller than 1 per cent, the results were considered to be grid-
independent. For the final simulations, we used grids consisting of 33,426
nodes (with finer grid spacing near the walls) for the entrance region and 4,032
nodes (with uniform grid spacing) for the fully developed region. Time-step
independence was established on the basis of preliminary calculations in which
the dimensionless time step �uDq=L; employed to advance in time, was
progressively reduced by 30 per cent from one simulation to another. When a
further decrease led to a change in the average Nusselt numbers smaller than 1
per cent, the results were considered to be independent on the time step. In the
final simulations, the dimensionless values of the time step ð �uDq=DHÞ were
equal to 0.05 for steady state flows and 0.025 for time-periodic flows.

In the interval of Reynolds number investigated, solutions were stationary
up to a critical value of the Reynolds number Recr, and became time-periodic
for Re . Recr: In time-periodic situations, overall parameters were further
averaged over a period (or a suitable time-interval), yielding single
representative values. This way we obtained time averaged values

Figure 2.
Finite element

discretization of a
representative

computational module
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kwl ¼
1

Q

Z qþQ

q

wðqÞdq ð44Þ

for w ¼ f ; Nu, Sh, j or jm. On the other hand, the symbol k l has been omitted in
the following.

The entrance and the fully developed region
Wavy fins have a larger surface to volume ratio than plain fins of the same
length and, at higher Reynolds numbers, leads to complex flow structures.
These flow structures are reflected by the velocity, temperature, and
concentration fields illustrated in Figures 3–5. Once again, to simplify

Figure 4.
Streamline contours
(top), temperature
contours (centre) and
concentration contours
(bottom) at Re ¼ 500:
Contours in the fully
developed ðx=L ¼ 1Þ
region are instantaneous
representations

Figure 3.
Streamline contours
(top), temperature
contours (centre), and
concentration contours
(bottom) at Re ¼ 100:
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graphical representations, we show the first three modules in the entrance
region, a representative half-module at a reasonable distance from the entrance
(the 15th half-module), and a half-module in the fully developed region (the mth
half-module, for m !1). The analysis was carried out for three Reynolds
numbers: Re ¼ 100; 500 and 1,000. These Reynolds numbers are in the range of
greatest technical interest since they correspond, for example, to air velocities
of 1 m/s, and reference lengths Dh varying from 1.5 to 15 mm.

At Re ¼ 100; the flow is quite regular, as demonstrated by the streamline,
temperature, and concentration contours shown in Figure 3. In the 15th half-
module the streamline, temperature, and concentration fields do not differ in
shape from the ones in the fully developed region. Heat and mass transfer
enhancements, with respect to plain fins of equal length, are only due to the
increase of the exchange surface per unit length, because of the regularity of the
flow.

At Re ¼ 500 the flow, temperature, and concentration fields become
irregular, as demonstrated by the contours shown in Figure 4. In the 15th
half-module the flow, temperature, and concentration fields are still steady, but
they become unsteady in the fully developed region where vortex shedding
occurs. As a consequence, in the fully developed region the contours are
instantaneous representations of the flow conditions. The self-sustained flow
oscillations, which take place in the fully developed region, are associated with
transverse vortices that detach periodically and move downstream. This
process transports fluid particles from the walls to the core and downstream,
enhancing both heat and mass convection. The time behaviour of the transfer
processes is shown in Figure 6, where we report the Nu vs. q curve in the fully
developed region and the corresponding power density spectrum. This
spectrum is obtained from the FFT analysis referred to the peak-to-peak
amplitude ANu of the Nusselt number oscillations. As we can see, the time
behaviour is periodic with one dominant frequency. When expressed in terms
of the Strouhal number

Figure 5.
Time behaviour of the

space-averaged Nusselt
number in the fully

developed region (left),
and corresponding

power density spectrum
(right) at Re ¼ 500:
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St ¼
Dh

�uQ
ð45Þ

the dimensionless value of the dominant frequency is St ø 0:24:
At Re ¼ 1; 000 the irregularities in the flow, temperature, and concentration

fields increase, as demonstrated by the contours shown in Figure 6. In both the
15th half-module, and in the half-module located in the fully developed region,
flow, temperature, and concentration fields are unsteady, as can be inferred
from their instantaneous representations. The time behaviour is shown in
Figure 7 where we report, once again, the Nu vs. q curve and the corresponding
power density spectrum. As we can see, there is still one-dominant frequency,
but the amplitude of the sub-harmonics has increased.

Figure 6.
Streamline contours
(top), temperature
contours (centre) and
concentration contours
(bottom) at Re ¼ 1000:
Contours in the 15th half
module and in the fully
developed region
developed ðx=L ¼ 1Þ
region are instantaneous
representations

Figure 7.
Time behaviour of the
space-averaged Nusselt
number in the fully
developed region (left),
and corresponding
power density spectrum
(right) at Re ¼ 1; 000:

HFF
12,6

750



It must be pointed out that, at all Reynolds numbers, there is a striking
resemblance between temperature and concentration solutions. In fact, under
the assumptions made here, the only difference between heat and mass transfer
models lies in the notation. Thus, by replacing the Nusselt number with the
Sherwood number, and the Prandtl number with the Schmidt number, we may
use convective heat transfer equations for convective mass transfer. This
analogy is exploited in the heat transfer literature, as will be discussed in the
next paragraph.

The irregularities in the flow patterns increase with the Reynolds number
and influence the friction factor and the convection coefficients, both in the
entrance and in the fully developed region. The behaviour of the friction factor
is shown in Figure 8, where we plot the f Re parameters for wavy and plain fins
as a function of the dimensionless variable:

xþ ¼
x=DH

Re
ð46Þ

In plain fins, and in wavy fins for Re ¼ 100; the apparent friction factor
decreases steadily from the entrance section to the fully developed region. On
the contrary, for Re ¼ 1; 000; we have a maximum in correspondence with the
transition from steady to unsteady flow at xþ ø 0:015: A similar behaviour
can be expected for the Re ¼ 500 curve but, in this case, the transition occurs in
the dashed zone, outside the regions investigated.

The behaviour of the convection coefficients can be illustrated by the
behaviour of the average Nusselt number, as shown in Figure 9. The Nusselt
numbers for wavy and plain fins are plotted as a function of the dimensionless
variable:

Figure 8.
Apparent friction factors
in the entrance and in the

fully developed region
for wavy channels at

Re ¼ 100; 500 and 1,000,
and for plain channels at

all Reynolds numbers
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x* ¼
x=DH

Re Pr
ð47Þ

In plain fins, and in wavy fins for Re ¼ 100; the average Nusselt number
decreases steadily from the entrance section to the fully developed region. On
the contrary, for Re ¼ 1; 000; we can see a minimum in correspondence with
the transition from steady to unsteady flow at x* ø 0:015: A similar behaviour
can be expected for the Re ¼ 500 curve but, as already remarked, the transition
occurs in the dashed zone, outside the regions investigated.

The heat and mass transfer analogy
As already pointed out, we may use convective heat transfer equations for
convective mass transfer. In the literature, this analogy is applied to the fully
developed flow region and is usually written in the form

j

jm
¼

ðNu Pr21=3Þ=Re

ðSh Sc21=3Þ=Re
¼

Nu

Sh

Sc

Pr

� �1=3

¼ 1 ð48Þ

where j is the Colburn factor for heat transfer, jm is the Colburn factor for mass
transfer, and 1/3 is an experimentally determined exponent, e.g. see Incropera
and De Witt (1996, p. 328). As can be inferred from Figure 10, our numerical
results for the fully developed region tend to satisfy exactly the heat and mass
convection analogy after the transition to oscillating flows has occurred at
Re . Recr:

Figure 9.
Nusselt numbers in the
entrance and in the fully
developed region for
wavy channels at
Re ¼ 100; 500 and 1000,
and for plain channels at
all Reynolds numbers
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The influence of the Reynolds number
The influence of the Reynolds number on the momentum and heat transfer
parameters is better investigated in the fully developed region. In Figure 11,
we report the ratios f=f 0 and Nu=Nu0; where f0 and Nu0 are the values for
the corresponding plain fins. As can be seen, both the friction factor and the
Nusselt number ratios increase with the Reynolds number. To evaluate the
variations in performance, we might use the parameter

Figure 10.
Ratio j=jm vs. the

Reynolds number in the
fully developed region

Figure 11.
Ratios f=f 0 and Nu=Nu0;
and goodness factor 1=10

vs. the Reynolds number
in the fully developed

region
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1 ¼
j

f
¼

Nu

Re Pr1=3

1

f
ð49Þ

which assumes the value

10 ¼
j0

f 0
¼

Nu0

ð f ReÞ0Pr1=3
¼ 0:08772 ð50Þ

for fully developed laminar flow of air ðPr ¼ 0:718Þ in plain channels. The ratio
1=10; shown in Figure 11, can thus be used as a goodness factor since it
represent the relative increase in heat transfer divided by the relative increase
in pressure drop. As we can see, this goodness factor reaches a minimum just
before the onset of the self-sustained oscillations.

Conclusions
Convective heat and mass transfer in laminar flows of humid air through plain
and wavy fin channels has been investigated. A completely general approach
has been followed, even though the finite element method has been used in the
discretization process. Velocity, temperature, and concentration fields have
been computed first. Quantitative results have then been obtained, for apparent
friction factors, Nusselt numbers, Colburn factors, and goodness factors. This
way, it has been found that heat and mass transfer analogy holds good for the
fully developed region after the transition to oscillatory flows has occurred at
Re . Recr; and that the goodness factor reaches a minimum just before the
onset of the self-sustained oscillations.
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